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Summary

Extensive research has demonstrated that several
specialized cortical regions respond preferentially to

faces [1–6]. One such region, located in the inferior oc-
cipital gyrus, has been dubbed the occipital face area

(OFA) [7]. The OFA is the first stage in two influential
face-processing models [8, 9], both of which suggest

that it constructs an initial representation of a face,
but how and when it does so remains unclear. The

present study revealed that repetitive transcranial

magnetic stimulation (rTMS) targeted at the right
OFA (rOFA) disrupted accurate discrimination of face

parts but had no effect on the discrimination of spac-
ing between these parts. rTMS to left OFA had no ef-

fect. A matched part and spacing discrimination task
that used house stimuli showed no impairment. In

a second experiment, rTMS to rOFA replicated the
face-part impairment but did not produce the same

effect in an adjacent area, the lateral occipital cortex.
A third experiment delivered double pulses of TMS

separated by 40 ms at six periods after stimulus pre-
sentation during face-part discrimination. Accuracy

dropped when pulses were delivered at 60 and 100 ms
only. These findings indicate that the rOFA processes

face-part information at an early stage in the face-
processing stream.

Results

To examine whether the occipital face area (OFA) is es-
pecially critical for face processing, repetitive transcra-
nial magnetic stimulation (rTMS) was targeted at the
OFA in each cerebral hemisphere during a delayed
match-to-sample task requiring discrimination of
matched faces and houses. The faces and houses var-
ied either in the parts or the spacing between parts
(see Figure 1). Face and house stimuli were blocked,
but within blocks the parts and spacing trials were ran-
domly interleaved. These stimuli were used previously
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in a functional magnetic imaging resonance (fMRI) study
of face processing and were behaviorally matched for
accuracy (for details, see [10]). To control for site spec-
ificity of TMS effects, vertex was also stimulated and
a no TMS condition was included for comparison.

Analysis of mean accuracy scores in experiment 1
showed that rTMS delivered at the right OFA (rOFA) im-
paired the discrimination of faces but not houses (see
Figures 2A and 2B). Further analysis showed that rTMS
at rOFA produced a selective impairment in discrimina-
tion of face parts but not face spacing. Face and house
discrimination were unaffected by rTMS delivered at
the left OFA (lOFA) and vertex. A repeated-measures
ANOVA of the face results showed a main effect of
TMS site (F = 4.1, df = 3,33, p = 0.014) but not of part
v. spacing (F = 4.4, df = 1,11, p = 0.06). TMS site and
part v. spacing combined in a significant two-way inter-
action (F = 4.4, df = 3,33, p = 0.011). Bonferroni corrected
post hoc comparisons revealed a significant difference
between discrimination of parts and spacing when stim-
ulating rOFA (p < 0.001). For face-part discriminations,
there were significant accuracy differences between
the rOFA and vertex (p = 0.004) and rOFA and no TMS
conditions (p < 0.001). No further post hoc tests ap-
proached significance. There were no significant results
for the response time (RT) data. An ANOVA performed
on the accuracy and RT data for the house discrimina-
tions showed no significant differences.

In experiment 2, the spatial specificity of the TMS-
induced face-part impairment at rOFA was further as-
sessed. In experiment 1, the rOFA was localized with
the mean Talairach coordinates from an fMRI study of
face processing [11], and its location does vary among
participants (see also [10, 12]). The same face and house
discrimination task was repeated, this time during TMS
stimulation of rOFA and an adjacent area, the lateral oc-
cipital cortex (LO) (see Figure S1 in the Supplemental
Data available online). Although the two sites are very
close (within 2 cm when marked on the heads of all partic-
ipants), each demonstrates a functionally different re-
sponse in brain imagingstudies.The rOFArespondspref-
erentially to faces [7, 11] and the LO to objects [13, 14].

rTMS delivered at the rOFA again impaired the dis-
crimination of faces parts but not face spacing, house
parts, or house spacing (see Figure 2C and Figure S2).
However, rTMS delivered at LO produced no part- or
spacing-discrimination impairments to either faces or
houses. A repeated-measures ANOVA of the face data
showed a main effect of TMS site (F = 3.1, df = 3,27,
p = 0.043) but not of part v. spacing (F = 1.1, df = 1,9,
p = 0.279). TMS site and part v. spacing combined in
a significant two-way interaction (F = 8.4, df = 3,27,
p = 0.001). For face-part discriminations, there were sig-
nificant accuracy differences between the rOFA and LO
(p = 0.034), the rOFA and vertex (p = 0.001), and the rOFA
and no TMS condition (p = 0.011). No further post hoc
tests were significant. There were no significant results
for the RT data. An ANOVA performed on the accuracy
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Figure 1. Examples of the Closely Matched Face and House Stimuli

Faces: Two sets of stimuli were generated from an image of a male face. For the spacing set, four faces were constructed by varying the distance

between the two eyes and between the mouth and the nose (see Figure 4). For the part set, the two eyes and the mouth were replaced in each of

the four faces by eyes and mouths from different faces.

Houses: House stimuli were created with a method similar to that used for the face stimuli. For the spacing set, four houses were constructed by

manipulating the location of the windows and the door. For the part set, the windows and the door were replaced by windows and a door with the

same shape but different internal features.
and RT data for the house discriminations showed no
significant differences.

In experiment 3, the timing of rOFA’s contribution to
face-part processing was assessed by delivering
double-pulse TMS separated by 40 ms at different
time points. Double-pulse TMS allows exploitation of
the temporal resolution of TMS by targeting short time
periods while benefiting from the summation effects of
two pulses [15]. Six timing conditions between 20 and
250 ms after stimulus onset were chosen. Time windows
were specifically targeted to affect the periods contrib-
uting to the face-specific M100 and M170 components
reported by MEG studies [16–19], which are believed
to correspond with face-specific activity.

Double-pulse TMS to rOFA at 60 and 100 ms impaired
accurate discrimination of face parts, but no other TMS
timings affected performance (see Figure 2D). A
repeated-measures ANOVA revealed a significant two-
way interaction of timing and TMS site (F = 4.2, df =
1,60, p = 0.002) but no main effect of timing (F = 1.7,
df = 1,60, p = 0.141) or of TMS site (F = 1.7, df = 1,60,
p = 0.219). Bonferroni corrected comparisons revealed
a highly significant difference between the accuracy
scores in the 60–100 ms time window between rOFA
and vertex (p = 0.001). No other comparisons ap-
proached significance. The RT data showed a main
effect of TMS site (F = 5.023, df = 1,60, p = 0.045), with
participants responding more slowly during rOFA stimu-
lation (see Figure S3). rOFA mean RT across all six TMS
conditions was 670 ms (SE = 44 ms), and vertex mean RT
across all six TMS conditions was 629 ms (SE = 43 ms).
The main effect of timing and the interaction were not
significant for RT.

Discussion

The results demonstrate that the rOFA plays an impor-
tant role in facial discrimination and furthermore that
its contribution occurs at an early stage of the face-
processing stream. Such a conclusion is in keeping
with two influential models of the face-processing net-
work [8, 9] that claim that the OFA generates an initial
representation of a face before subsequent processing
of other features such as identity and emotional expres-
sion. Evidence for these models comes from two princi-
pal sources: brain imaging studies and neuropsycholog-
ical patient data.

A recent fMRI study demonstrated that the OFA
shows release from adaptation when the physical ap-
pearance of a face is varied, even when that change
does not lead observers to perceive a different identity
[20]. In contrast, the fusiform gyrus (an area that shows
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Figure 2. Graphs Illustrating the Results from Experiments 1, 2, and 3

(A) Mean accuracy scores for faces in experiment 1. Asterisk denotes a significant difference between face parts and face spacing (p < 0.001)

at rOFA, and between face-part discrimination at rOFA and vertex (p = 0.004) and rOFA and no TMS (p < 0.001).

(B) Mean accuracy scores for the house stimuli in experiment 1.

(C) Mean accuracy scores for faces in experiment 2. Asterisk denotes a significant difference for face-part discrimination between the right

OFA and LO (p = 0.034), the right OFA and vertex (p = 0.001), and the right OFA and no TMS condition (p = 0.011).

(D) Mean accuracy scores for face parts in experiment 3. Double-pulse TMS to rOFA significantly affected discrimination only when delivered at

60 and 100 ms after stimulus presentation (asterisk denotes the significant difference between rOFA and vertex when double-pulse TMS was

delivered 60 and 100 ms from stimulus, p = 0.001).

Error bars denote standard errors.
greater activation during facial identification) showed
release from adaptation only when the face changes
caused viewers to perceive a different identity.

Lesion analysis in prosopagnosics has revealed the
critical role played by the rOFA. A meta-analysis of neu-
ropsychological patients found the majority of those
with face-processing impairments exhibited lesions en-
compassing the rOFA as defined by anatomical coordi-
nates [21]. By comparison, neurological damage in the
fusiform gyrus across the group was less common. Like-
wise, two detailed case studies of acquired prosopag-
nosia appear to result from damage to the cortical
region usually encompassing the rOFA [11, 22, 23].
The present finding complements and strengthens
these lesion studies because the temporary impairment
induced by TMS was specific to the rOFA, whereas neu-
ropsychological patients frequently exhibit cortical
damage extending to other visual areas (see [21]). Fur-
thermore, the transient interference of TMS precludes
any account of the rOFA effect based on compensatory
neural reorganization [24, 25].

In experiment 1, rTMS delivered at the rOFA selec-
tively impaired face-part but not face-spacing discrimi-
nation. A possible explanation for this dissociation is
suggested by an fMRI study that assessed repetition
suppression for faces composed of either low or high
spatial frequencies (SF) [26]. The study found the right
inferior occipital gyrus (the area containing the OFA)
showed suppression for high SF faces but not low SF
faces [27, 28]. Although the relationship between
spacing/part discrimination and low/high SFs is not
straightforward [29], a study showed that discrimination
of face parts relied more heavily on high SFs than face
spacing, and so our part task was more likely to be dis-
rupted by TMS to rOFA than our spacing task (see also
[30]).

rTMS delivered at the lOFA in experiment 1 did not
lead to significant impairments in face discrimination.
This difference between rOFA and lOFA is in keeping
with the many lines of evidence demonstrating that
faces are preferentially processed in the right hemi-
sphere [3, 10, 31–34], particularly fMRI results that
have shown that rOFA is more consistently detected
than lOFA [7, 11]. It is also possible that the compara-
tively deeper cortical location of lOFA made it more
difficult to impair with TMS.

Magnetoencephalography (MEG) studies of face pro-
cessing report a face-specific response approximately
100 ms after stimulus onset (the M100 component),
which is generated bilaterally in occipitotemporal re-
gions [16, 17]. Experiment 3 demonstrated that the
time period affected by two TMS pulses at 60 and 100
ms was the only one that resulted in significant perfor-
mance degradation. This temporal correspondence be-
tween the M100 and the TMS effects suggest that the
rOFA and the right lateralized M100 may be produced
by the same cortical activity. Given that no further dips
were observed from 20 to 250 ms, rOFA appears to
make a relatively early and discrete contribution to
face processing.
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Figure 3. Diagram Showing the Location of the Left OFA and Right OFA in One Subject

Left: Normalized location of the left OFA (lOFA) in one subject. Based on Talairach coordinates 234, 281, 14.

Right: Normalized location of the right OFA (rOFA) in one subject. Based on Talairach coordinates 38, 280, 27.
In summary, experiment 1 demonstrated that rTMS
delivered at the rOFA selectively disrupted discrimina-
tion of face parts while leaving discrimination of face
spacing and both types of house discriminations unaf-
fected. In contrast, rTMS targeted at lOFA and vertex
had no effect. The face-part discrimination impairment
at rOFA was replicated in experiment 2. More impor-
tantly, it also demonstrated the spatial specificity of
the TMS-induced effect by failing to produce an im-
pairment in an adjacent area of the occipital cortex,
the LO. Finally, in experiment 3, paired TMS pulses
delivered at 60 and 100 ms after stimulus onset to
rOFA affected face-part discrimination whereas pairs
delivered at other times had no effect. This study is
the first to apply TMS to the rOFA and demonstrates
that rOFA is involved at an early and important stage
in the face-processing stream. We expect that future
TMS studies will further refine the understanding of
how face information is represented in the posterior
visual cortex.

Experimental Procedures

Participants

Twenty-five right-handed healthy volunteers (11 males and 14 fe-

males, aged 19 to 33) gave informed consent in accordance with

the ethics committee of University College London. Twelve partici-

pants took part in experiment 1, ten in experiment 2, and thirteen

in experiment 3. Three took part in all three experiments, two in ex-

periments 1 and 2, and two in experiments 2 and 3. One participant

was removed from analysis in experiment 1 for performing at chance

in all house-spacing conditions. Across all experiments, three par-

ticipants withdrew during testing because of discomfort with TMS

stimulation.
Apparatus and Materials

Stimuli were presented centrally on an SVGA 17-inch monitor set at

1024 by 768 resolution and refresh rate of 100 Hz. Experimental stim-

uli were grayscale images of faces and houses that were 300 3 300

pixels. See Figure 1 for details.

TMS Stimulation and Site Localization for Experiment 1

and Experiment 2

A Magstim Super Rapid Stimulator (Magstim, UK) was used to de-

liver the TMS via a figure-of-eight coil with a diameter of 70 mm.

TMS was delivered at 10 Hz and 60% of maximal stimulator output,

with the coil handle pointing upwards and parallel to the midsagittal

plane. A single intensity was used for all subjects on the basis of sev-

eral previous studies [15, 35–37]. On blocks of trials with TMS, test

stimuli were presented during 500 ms rTMS with onset concurrent

with the onset of the target visual stimulus. FSL software (FMRIB,

Oxford) was used to transform coordinates for the lOFA, rOFA,

and LO individually for each subject. Each subject’s MRI scan was

normalized against a standard template, and each transformation

was used to convert the appropriate Talairach coordinates to the

untransformed (structural) space coordinates, yielding subject-

specific localization of the sites. The Talairach coordinates for the

lOFA (234, 281, 214) and rOFA (38, 280, 27) were taken from an

fMRI study of face processing [11] (see Figure 3). The LO coordi-

nates (46, 271, 24) were taken from an fMRI study of object and mo-

tion processing [14]. TMS sites were located by Brainsight TMS-MRI

coregistration system (Rogue Research, Montreal, Canada), utilizing

individual high-resolution MRI scans for each subject. The relevant

target area was localized by the individual transformed coordinates

and then marked on each participant’s head. The vertex, a point at

the center of the top of the head, was defined as a point midway be-

tween the inion and the nasion and equidistant from the left and right

intertragal notches.

Procedure for Experiment 1 and Experiment 2

The trial procedure is illustrated in Figure 4. Subjects were seated

with their heads stabilized on a chinrest 57 cm from the computer

screen. Face and house stimuli were blocked. Within each block,



Current Biology Vol 17 No 18
1572
Figure 4. Trial Procedure for Experiments 1, 2, and 3

Timeline of the experimental procedure for experiment 1, experiment 2, and experiment 3 (an example of face-part stimuli is shown). TMS

protocol for experiments 1 and 2: 10 Hz for 500 ms; TMS protocol for experiment 3: double-pulse TMS, 40 ms apart delivered at 20 and 60

ms, 60 and 100 ms, 100 and 140 ms, 130 and 170 ms, 170 and 210 ms, 210 and 250 ms.
the part images (40 trials) and the spacing images (40 trials) were

randomly interleaved. Block order (houses or faces) was balanced

between participants. In experiment 1, TMS was delivered at three

locations in different blocks; rOFA, lOFA, and vertex. In experiment

2, TMS was delivered at rOFA, LO, and vertex. The order of TMS

stimulation site was balanced between participants. Participants

were instructed to indicate whether the target face was the same

or different by means of a keyboard response with the right hand

and were instructed to try to respond as accurately and as quickly

as possible.

TMS Stimulation and Procedure for Experiment 3

All aspects of the TMS protocol were identical to experiment 1

except the timing of the TMS delivery and the sites stimulated.

Double-pulse TMS was delivered at rOFA and vertex with 40 ms be-

tween pulses at six different times from stimulus onset: 20 and 60

ms, 60 and 100 ms, 100 and 140 ms, 130 and 170 ms, 170 and 210

ms, and 210 and 250 ms.

Pairs of faces that differed in parts were shown in random order in

blocks of 40 trials. The order of the six double-pulse TMS timing

blocks was balanced among participants and stimulation site,

rOFA, and vertex. Trial procedure was as in experiment 1.

Supplemental Data

Three figures are available at http://www.current-biology.com/cgi/

content/full/17/18/1568/DC1/.
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