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Developmental prosopagnosia (DP) refers to face recognition

deficits in the absence of brain damage. DP affects �2% of the

population, and it often runs in families. DP studies have made

considerable progress in identifying the cognitive and neural

characteristics of the disorder. A key challenge is to develop a

valid taxonomy of DP that will facilitate many aspects of research.
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Introduction
Developmental prosopagnosia (DP) [1], also known as

congenital prosopagnosia, is a specific neurodevelopmen-

tal disorder of face recognition despite normal intelli-

gence, low-level vision, and broader social cognition [2,3].

In contrast to those with acquired prosopagnosia [4],

individuals with DP have no history of brain injury.

DP can lead to elevated rates of anxiety and chronic

stress [5]. Prevalence estimates suggest �2% of the

population suffer from DP [6,7] (See Box 1).

Overview of DP
Although formal diagnostic criteria have not been agreed

upon, DP is typically diagnosed when an individual who

complains of face recognition problems in daily life is

impaired on standardized tests of face recognition, such as

the Cambridge Face Memory Test (CFMT) [8], as well

as on tests of famous face recognition appropriate for the

individual. Deficits in DP are often as severe as those in

acquired prosopagnosia [9]. For example, 17 DP individ-

uals tested in our laboratory averaged 49% correct (range

36–60%) on the CFMT, which was substantially lower

than the control mean of 80% (SD = 11%) [10�], and

comparable to five recently reported acquired prosopag-

nosics who averaged 54% (range 42–60%) [11]. Perform-

ance on famous face memory tests is usually far below the
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control range: the mean for the 17 DP individuals above

was 39% (range 2–62%), while the control mean was 89%

(SD = 9%) [10�].

DP is a heterogeneous disorder, with individual cases

showing varied behavioral profiles. Some individuals were

impaired with facial identity memory but were able to

match faces side-by-side [12], while others were impaired

with both tasks [12,13]. Some individuals were even

impaired at detecting the presence of a face in a complex

image [14]. DP individuals have also shown deficits at

processing non-identity aspects of the face including

expressions [10�,15,16], sex [9,15], attractiveness

[15,17], and trustworthiness [18].

A long-running controversy in the face recognition litera-

ture concerns the face-specific hypothesis, which holds

that faces are processed by dedicated mechanisms [19–
21]. Although some individuals with DP had problems

recognizing nonface objects [9,22,23], some cases exhib-

ited deficits only for faces [22,24]. A notable case is

Edward [15,25], who was tested with a variety of face

and nonface tasks to evaluate multiple alternatives to the

face-specific hypothesis, such as the within-class discrimi-

nation [26] and the expertise [27] hypotheses. Edward’s

normal performance with the nonface tasks was incon-

sistent with each of the alternatives and could only be

accounted for by the face-specific hypothesis. Further

evidence consistent with the face-specific hypothesis

came from the opposite developmental disorder: AW

was able to recognize faces normally but not objects

[28�]. Together, Edward and AW constitute a double

dissociation between developmental disorders of face

and object recognition.

Cognitive characteristics of DP
Unlike most types of objects, faces are represented as a

perceptual whole [21,29,30]. This style of representation,

referred to as holistic or configural face processing, raises

the possibility that face recognition deficits in DP may

result from abnormal holistic face processing. This issue

has been investigated by assessing the inversion effect

(i.e. disproportionately poor recognition when faces are

seen upside-down [20]) and the composite effect (i.e.

perception of one-half of a face is influenced by the other

unattended half [31]). Results are mixed for both inver-

sion [9,13,14,17,24,32–35] and composite [17,33,35–37]

effects, indicating that holistic processing is not always

impaired in DP.

A revealing insight into holistic face representation in DP

was recently provided by a study [38�] of the part-whole
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effect (i.e. recognition of a face part is much better in

context of the whole face than in isolation [39]). This

study examined holistic processing for eyes, nose, and

mouth separately in the largest DP sample to date (38

individuals). The authors found a lack of holistic proces-

sing for eyes but not for mouths (Figure 1). This finding

suggests that atypical processing of the eyes may be a

critical factor in DP, similar to what has been proposed in

acquired prosopagnosia [40].

Face recognition is often conceptualized as relying on

face space: a space in which facial identities are mapped

according to their values on the multiple dimensions used

to represent facial features [41]. The status of face space

in DP has been examined in seven individuals, all of

whom showed normal representation [36,42], suggesting

that recognition problems in DP may originate in later

processes that read the output from face-space repres-

entations.

Some DP individuals can extract an ‘‘average identity’’

from a set of identities which they failed to recognize [43],

consistent with several reports of covert face processing

[44–46]. Indeed, a recent event-related potential (ERP)

study [47] found that six out of 12 DP individuals showed
Figure 1
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a stronger N250 response, a component believed to reflect

the matching of a percept to a memory, to unrecognized

famous faces than to unrecognized novel faces matched in

appearance. In contrast, no difference was found in their

response to the two sets of faces in a later component, the

P600f, which is considered an index of the activation of

semantic person representations. These results suggest

that unconscious recognition of identity in the visual

system was not fed forward to semantic mechanisms.

Similar findings of covert processing in dyslexia [48]

and amusia [49] indicate that failures to access conscious

representations may commonly be a factor in selective

neurodevelopmental disorders.

Neural findings in DP
The neural basis of face processing has received exten-

sive research attention in the last two decades. Several

cortical regions show much stronger functional magnetic

resonance imaging (fMRI) response to faces than to

control stimuli, most notably in fusiform gyrus, inferior

occipital gyrus, and superior temporal sulcus [50]. Often

considered the core system, these face-selective regions

constitute the front end of a broader network of areas

responsible for different aspects of face processing [51].

As a group, DP individuals have shown reduced face-
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Box 1 Developmental prosopagnosia or congenital

prosopagnosia?

Throughout this article we use the term developmental prosopag-

nosia (DP) [1,23,24,75,76] for a specific reason: we conceptualize DP

as a disorder caused by anomalies occurring at any time during the

development of the mechanisms used for face recognition. Other

researchers however prefer the term congenital prosopagnosia (CP)

[37,57,77–79], describing the disorder as lifelong and, by definition,

assuming its presence at birth. Are DP and CP synonymous or are

there substantive differences between them?

DP is a more general label whereas CP is a term that implies

evidence of prosopagnosia or some correlate of the disorder at birth

or at least early in infancy. Collecting such evidence would be

challenging but in principle possible [80,81]. For example, newborn

children from families with a history of DP could be assessed if

infant-friendly behavioral or neurophysiological measures that pre-

dict prosopagnosia later in life become available.

In addition, it is important to note that DP likely has multiple

etiologies and onsets. Perhaps certain types of DP are caused by

disturbance during prenatal development (See Box 2), and thus are

appropriately classified as CP. The onset of other types of DP may

be postnatal, resulting from a failure to develop typical face

processing mechanisms in infancy or childhood.
selectivity in core face regions [52], though it is worth

noting that some of these individuals show typical face-

selectivity [52,53]. Another functional signature of face

processing is an ERP component called the N170, which

shows a larger response to faces than nonfaces [54]. Some

individuals with DP showed N170 with normal face-

selectivity [16,55,56] whereas others did not [55–57].

What lies behind these mixed results is unclear, but is

likely related to the heterogeneity of DP.

The existence of face-selective regions and N170 in DP

may, however, mask subtle impairments. For example,

case C [58] exhibited normal face-selective regions, but

the regions did not show repetition suppression (i.e.

reduction in fMRI response to repeated stimuli [59]).

Similarly, an ERP study of 16 DP individuals [56] found

normal face-selectivity for the N170 at the group level but

observed that the N170 component was not enhanced for

inverted faces as it was in controls (Figure 2). Extending

previous reports [23,60], this study suggests that individ-

uals with DP process upright and inverted faces similarly.

These examples illustrate that studies of neural functions

in DP may benefit from not only examining the existence

of signatures of face processing, but also whether

they exhibit the properties characteristic of normal face

recognition.

Structural correlates of DP have also been identified. A

diffusion tensor imaging study found reduced connec-

tivity in two major tracts that project through the fusiform

region to more anterior areas, indicating abnormal integ-

rity of white matter in ventral cortex [61�]. Other inves-

tigations using voxel-based morphometry found gray

matter reduction in cortical regions implicated in face
www.sciencedirect.com 
processing including fusiform gyrus, inferior temporal

gyrus, and superior temporal sulcus [10�,62]. Of note,

similar gray matter reduction in regions involved in

phonological processing has been reported in develop-

mental dyslexia [63,64], hinting at a common etiology for

DP and developmental dyslexia (see Box 2).

In sum, neural studies have begun to characterize func-

tional and structural correlates of DP. An important next

step will be to map particular neural correlates onto

specific cognitive deficits. This step is challenging

because the relationship between neural and cognitive

mechanisms in face processing remains unclear. Despite

substantial effort, attempts to localize specific cognitive

operations onto focal neural regions have met with lim-

ited success [50].

Genetic factors in DP
Consistent with the strong heritability of face recognition

in the general population [65��,66], DP tends to run in

families [33,67–69]. These findings indicate that DP is a

disorder with a genetic component.

Self-report data suggest that DP may be a monogenic,

autosomal dominant disorder [6,7]. This idea is consistent

with the profile of the largest family tested in our lab, in

which DP is seen in both sexes in about half the members.

However, most neurodevelopmental disorders appear to

be polygenic because they result from allelic variants that

are relatively frequent in the population and are therefore

neither necessary nor sufficient for developing the con-

dition. The monogenic view also predicts the existence of

large, extended families of prosopagnosics. However,

despite contact with more than 7500 self-identified DP

individuals over the last decade, we have yet to hear from

a family with more than eight affected members.

These considerations suggest that DP may instead result

from the cumulative effect of multiple genes. If correct,

the probability of DP in an extended family would

decrease as genetic distance from the prosopagnosic

member increases. Another prediction is that the face

recognition ability of the nonprosopagnosic family mem-

bers would be lower than the population average because

these individuals will carry some of the genes associated

with DP. Indeed, only one of the nine nonprosopagnosic

members of the family above scored better than average

on the CFMT.

Intervention in DP
Several intervention attempts have been reported [70–
73]. Most noteworthy is a study of case MZ, who practiced

classifying hundreds of faces per day based on distances

between facial features such as eyes and nose [73]. MZ

reported temporary improvement in her daily face recog-

nition following training, which was supported by formal

testing and accompanied by the emergence of a face-
Current Opinion in Neurobiology 2013, 23:423–429
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Figure 2
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N170 inversion effects in DP, adapted with permission from [56]. (Left) Average ERP elicited by upright and inverted faces for DP and control groups.

The young but not older control group showed enhanced N170 component to inverted faces. Neither DP group showed an enhanced N170. (Right)

Size of N170 inversion effect (defined as N170 amplitude for upright faces minus N170 amplitude for inverted faces) for the 16 DP (blue bar) and 16

control (grey bar) individuals, sorted based on the size and polarity of the effect. Asterisks indicate significant N170 inversion effects based on a

bootstrapping analysis, regardless of polarity. For young participants, only two of eight DP individuals exhibited inversion effect in the normal range, in

contrast to almost all control individuals.
selective N170 and more typical connectivity between

face-selective regions. Two other studies trained children

with DP to focus their attention on inner facial features

[70,71]. Eye-tracking analyses showed increased fixations

on the inner features after training, and recognition of

trained faces improved in both cases.

While these efforts suggest certain training regimes may

improve face recognition ability in DP, future work will

need to use larger samples, explore the generalizability of

training to daily life, and most critically, make use of

randomized controlled trials.

A taxonomy of DP
A key challenge for researchers is to develop a valid

taxonomy of DP, which will help resolve inconsistent
Current Opinion in Neurobiology 2013, 23:423–429 
findings and facilitate many aspects of research. For

example, the mixed results of cognitive and neural stu-

dies may result from grouping DP individuals with dis-

tinct phenotypes. Similarly, different types of DP are

likely to respond to different rehabilitative strategies.

A natural starting point for developing a taxonomy of DP

is contemporary models of face recognition [51,74]. These

models propose that faces are processed by a network of

subsystems, each responsible for analyzing different

aspects of the face such as identity, sex, gaze, expression,

and trait. Atypical development of particular subsystems

would result in deficits for certain aspects of face proces-

sing but not others. Future studies should assess these

different face aspects simultaneously in a large DP

sample to uncover systematic associations and dis-
www.sciencedirect.com
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Box 2 Do neural migration errors contribute to DP?

Selective neurodevelopmental disorders have been identified for a

wide variety of human cognitive abilities including numerical,

language, motor, navigation, face recognition, object recognition,

voice recognition, visual localization, semantic memory, and many

others [82,83], raising the question of whether these disorders share

a common etiology. An appealing model based on findings from

developmental dyslexia proposes that they might [84]. In this model,

phonological deficits in dyslexia are caused by cortical dysplasias in

the left perisylvian cortex (LPC) which result from neural migration

errors. Consistent with this model, autopsies have observed focal

dysplasias in LPC [85,86] and most genes associated with dyslexia

are involved in neural migration [87].

Ramus [84] suggests that this model can be generalized to other

selective neurodevelopmental disorders. Neural migration errors in

focal cortical regions would disrupt specific cognitive abilities

subserved by those regions, just as dysplasias in LPC disrupt

phonological processing. In the case of DP, neural migration errors in

occipital and temporal regions involved in face processing would

disrupt face recognition. Highly circumscribed dysplasias would

result in face-specific deficits [15], whereas more extended dysplasia

would disrupt other abilities such as object recognition and spatial

navigation mediated by nearby regions [9,22,88]. It is currently

unclear whether neural migration problems contribute to DP, but the

dyslexia findings [89�] provide a roadmap for future work in DP.
sociations between different face deficits, which will

reveal the dimensions underlying the varied behavioral

profiles of face recognition deficits in DP.
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